中文 English
  • 首页
  • 实验室概况
    实验室简介
  • 科研条件
    CPU服务器
    GPU服务器
  • 科学研究
    非傅立叶热传导
    纳米美特材料中声子波动行为的研究
    新型材料热输运性质研究
    界面热阻研究
  • 人员队伍
    教师
    博士研究生
    硕士研究生
    毕业学生去向
  • 研究成果
    发表论文
  • 加入我们
  • 学术共享
首页 / 科研进展
  • 15 2023-11
    《Rare Metals》刊登博士研究生任卫君在新型石墨烯基复合材料——碳蜂巢结构热输运领域的研究论文
    5月25日,物理科学与工程学院声子学中心陈杰教授课题组在《Rare Metals》在线发表了题为“Carbonhoneycomb structure with high axial thermal transport and strong robustness”的研究论文,系统研究了碳蜂巢结构的轴向热输运性能及其影响因素。图(a) 碳蜂巢结构模拟设置示意图(插图)以及碳蜂巢结构轴向热导率随体系长度的变化关系;图(b) 碳蜂巢结构轴向以及少层石墨烯面外方向的归一化的声子透射谱;图(c) 碳蜂巢结构以及单层石墨烯面内和轴向热导率随结构无序度的变化;图(d) 不同面内无序度下碳蜂巢结构轴向的归一化的声子透射谱。近年来,随着材料合成以及制备技术的迅速发展,基于低维纳米材料的热管理系统已经应用于实际生产以及现代工业的诸多领域,在热能的传输、转换和控制等方面发挥着至关重要的作用。同时,实际应用也对热管理材料的性能及其大规模制备提出了更为严峻的挑战。因此,设计和制造具有更强热输运性能的低维纳米材料及其复合体系已经成为了亟待解决的问题。在这一领域,种类丰富且具有优异面内热输运性能的二维材料,例如,石墨烯以及六方氮化硼等,为提高纳米复合材料多维度的热输运性能提供了有利条件。其中,一种新型的石墨烯基复合材料——碳蜂巢结构因其优异的机械性能、较高的孔隙率等特点,在能量转换以及储氢性能上引发了研究人员的广泛兴趣。更重要的是,得益于其组分石墨烯片极高的面内热导率,碳蜂巢结构能够极大地改善少层石墨烯在面外方向热传导能力的不足,从而在多维度改善低维纳米材料的热输运性能。同时,在实际材料制备过程中不可避免地会引入结构的无序度或不规则性,导致材料中声子散射强度增大,这对低维纳米材料的热传导性能将产生极强的抑制作用。因此,结构无序度对碳蜂巢结构面内以及轴向热导率的影响值得深入研究和分析。我院声子学中心陈杰教授团队建立了一种以共价键连接的新型碳蜂巢结构模型,并采用非平衡态分子动力学模拟方法,证实了碳蜂巢结构超高的轴向热输运性能,在室温下本征轴向热导率高达746 Wm-1K-1,已经可与单层悬空的六方氮化硼等具有优异导热性能的二维材料相媲美。通过比较碳蜂巢结构轴向和少层石墨烯沿垂直平面方向的声子透射谱,揭示了碳蜂巢结构具有超高轴向热导率的物理起源。相较于常见的一维碳纳米管以及二维材料体系,碳蜂巢结构不仅具有多维度的良好热输运能力,同时也具备较大的热接触面积,这使得碳蜂巢结构在纳米复合材料热管理领域具有巨大的应用潜力。在结构无序度对体系热导率的影响方面,通过与石墨烯做对比,我们发现碳蜂巢结构面内热导率对面内无序度的敏感性较小。例如,30%结构无序引起碳蜂巢结构中面内热导率的下降仅为26%,而石墨烯中热导率下降高达74%。该结果表明,碳蜂巢结构中面内热传导对混乱的结构具有一定程度的鲁棒性。更值得注意的是,碳蜂巢结构中沿轴向超强的热输运性能对结构无序则具有更强的鲁棒性。我们的模拟结果表明,即使无序程度高达60%,碳蜂巢结构轴向热导率降低不到10%。这种微小变化表明,碳蜂巢结构沿轴向的热输运与沿面内方向的结构无序度几乎是解耦的。这是因为在碳蜂巢结构中引入结构无序仅重组了石墨烯侧壁的形状,但石墨烯侧壁之间的共价连接方式未发生变化。我们的结果证实了这种新型石墨烯基复合材料在多维热传输性能方面均具有优异的鲁棒性,并且轴向热输运性能对于面内结构无序的鲁棒性上则表现得更加优异。我校物理科学与工程学院2019级博士生任卫君为论文第一作者,陈杰教授为论文唯一通讯作者。该工作得到了国家自然科学基金、国家重点研发计划和上海市科委等项目支持。论文链接:https://doi.org/10.1007/s12598-023-02314-z
  • 06 2023-11
    《Chinese Physics Letters》刊登硕士研究生姜剑辉关于二维材料中实现声子聚焦的研究论文
    研究背景 作为固体中的准粒子,声子同时具有类似波和粒子的特性,是绝缘体和半导体中的主要热载体。声子的波动特性不仅可以用来调控材料中的热传输,并且在量子信息中有重要应用。波聚焦是一种重要的波动调控行为,不仅在医学诊断和肿瘤热疗中发挥着重要作用,而且在工程领域的无损探伤技术中也十分重要。之前的工作,人们主要基于声子的粒子特性,研究了各向异性固体中的声子聚焦,实现了准一维的热传输。这种声子聚焦主要依赖于晶体的各向异性,没有利用相位控制。因此,在各向同性的系统中实现声子聚焦仍是一项挑战。内容简介 最近,同济大学物理科学与工程学院陈杰教授课题组基于对晶格波的相位调控,在单层石墨烯中构建了原子级别的人工微结构,实现了可控声子聚焦。该工作在单层石墨烯中设计了包含同位素的三角形结构,在三角形结构顶点附近实现了单模声子聚焦,并且通过改变结构的高度,可以实现声子聚焦点的位置、能量和时间等多种特征的调控。更有趣的是,通过改变声子入射方向,可以获得不同的声子聚焦图案和能量传输系数,体现出非对称传输特性。该工作深入讨论了声子在聚焦过程中发生的模式转换机制,为基于原子级微结构设计实现声子模式聚焦效应提供了物理机制分析。上列:单层石墨烯中引入三角形原子级人工微结构实现声子聚焦效应的示意图。 下列:左图为单模声子波包正向入射透过该结构的聚焦图案。中图显示了结构的宽度与聚焦点呈线性关系,可用于调控声子聚焦点的位置。右图为单模声子波包反向入射透过该结构的聚焦图案。文章亮点 基于声子波动特性,在各向同性的二维材料中实现了声子聚焦效应,为通过原子级微结构设计实现可控声子聚焦提供了物理见解。 研究意义和重要性 该工作通过在单层石墨烯中设计原子级人工微结构,在各向同性系统中实现了可控声子聚焦效应。这种基于声子波动特性的聚焦效应不仅对调控材料中热传输具有重要意义,而且有助于拓展声子工程在医学和检测领域的相关应用。文章链接:http://10.1088/0256-307X/40/9/096301
  • 06 2023-11
    《Physical Review B》刊登博士研究生俞崔前关于石墨烯中第二声传播的研究论文
    物理科学与工程学院陈杰教授课题组在APS期刊 《Physical Review B》上发表了题为“Characteristicsof distinct thermal transport behaviors in single-layer and multilayer graphene”的研究文章,揭示了石墨烯体系中第二声现象的微观振动模式起源,为理解二维材料中声子流体动力学输运提供了有价值的见解。在描述固体传热的研究中,除了被大量研究的弹道和扩散输运图像外,声子流体动力学(hydrodynamics)输运是另外一种独特的声子输运图像。第二声现象作为声子流体动力学输运的重要特征,是目前非傅里叶热传导领域的研究热点。图1 (a)10 ps时刻的采样区域示意图(虚线框):峰I对应于弹道峰,峰II对应于第二声峰,非温度峰区域对应于扩散区域。(b-d)展示的是(b)弹道峰,(c)第二声峰以及(d)扩散区域投影到单层石墨烯声子谱上的归一化模式能量。(b-d)中的颜色代表声子模式能量的大小。在本工作中,我们通过瞬态热传导模型(图1(a))研究了单层石墨烯、多层石墨烯以及石墨中第二声的基本特性。通过传播速度和模式能量分析,很好地揭示了第二声峰、弹道峰和扩散区域的输运特征。模拟结果表明,弹道峰由面内LA声子和TA声子主导(图1(b)),第二声峰主要由面外ZA声子贡献(图1(c))。与上述区域不同的是,不同偏振的声子模式都同等地参与了扩散区域内的能量输运(图1(d))。相比于弹道峰,第二声峰具有携带大量热能、持续时间长、耗散速率低的特点。这也是单层石墨烯高热导率的原因。此外,由于增加石墨烯的厚度能显著得增加U过程散射的权重,第二声现象会因此变弱。最后,我们还观测到了第二声存在的狭窄温度窗口,其上限为110 K,因为U过程散射会随着温度的继续升高而占据主导地位。陈杰教授课题组博士生俞崔前为论文第一作者,张忠卫和陈杰教授为论文共同通讯作者。该项工作得到了国家自然科学基金,上海市科学技术委员会以及上海浦江项目的支持。文章链接:https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.165424
  • 25 2023-10
    《Nanotechnology》刊登博士研究生何佳关于应变工程在BH晶格热导率调控中的复杂作用的研究论文
    10月24日,同济大学物理学院声子学中心陈杰教授团队在学术期刊《Nanotechnology》发表了题为“Complex role ofstrain engineering of lattice thermal conductivity in hydrogenatedgraphene-like borophene induced by high-order phonon anharmonicity”的研究论文,深入揭示了应变工程在调控具有宽声子带隙二维材料晶格热导率过程中的复杂作用。
  • 17 2023-05
    《Applied Physics Letters》刊登博士研究生俞崔前关于具有水平镜面对称性的单层和氢化双层砷化硼中较强的四声子散射的研究论文
    基于三阶非谐散射的玻尔兹曼输运方程被广泛运用于预测材料晶格热导率,通常能够获得与实验测量值吻合的结果。近年来,有一些研究表明高阶的非谐声子散射(例如四声子散射)在某些宽声子带隙化合物(例如:立方BAs和TaN)的热输运中扮演着重要的角色。在本工作中,通过求解玻尔兹曼输运方程,我们研究了四声子散射在单层和氢化双层BAs的热输运中的影响(图1(d))。当仅考虑三声子散射,热导率的温度依赖关系为κL ~ T-1。加入四声子的影响后,热导率的温度依赖关系变为κL ~ (AT+BT2)-1。通过考虑四声子散射,单层和氢化的双层BAs的晶格热导率均会下降。特别是对于单层的BAs,其晶格热导率下降了80%。此外,双层结构的热导率反而高于单层的BAs,这一结果与少层石墨烯中的结论是相反的。随后通过比较了具有和缺失水平镜面对称性的结构,我们发现在具有水平镜面对称性的单层和AA堆垛的双层氢化BAs中,四声子散射导致ZA声子贡献的热导率急剧下降(单层从24%下降到2%,AA堆垛的双层氢化BAs从21%下降到6%)。同时,在缺失水平镜面对称性的AB堆垛中,此现象不显著(从7%下降到4%)。
  • 17 2023-05
    《Frontiers of Physics》刊登博士研究生俞崔前关于Lennard-Jones固体多层结构中热输运反常提升的分子动力学研究的论文
    近年来,由于声子的波粒二象性,周期性超晶格中热输运行为引起了人们的关注。例如,超晶格中非相干到相干声子输运转变的现象,以及由于声子干涉效应导致的全透射和全反射现象等。在同等长度和界面密度的多层结构中,完美的周期性超晶格通常被认为是导热能力最佳的结构,因为在周期性超晶格中引入无序度后,会导致安德森局域化从而抑制相干声子输运,最终降低热导率。
  • 20 2023-01
    Physical Review Letters刊登张忠卫博士在相干声子输运领域的重要进展
    1月3日,物理科学与工程学院声子学中心陈杰教授及其合作者在《Physical Review Letters》在线发表了题为“Heat conduction theory including phonon coherence”的研究论文,发展了关于声子相干性表征及其对热导率贡献的重要理论。
  • 08 2022-10
    《中国科学:物理学力学天文学》(SCIENTIA SINICA Physica, Mechanica & Astronomica, SCPMA)刊登团队对于近十多年热输运领域中新兴理论和新奇现象的综述性论文
    北京时间2022年10月8日,《中国科学:物理学力学天文学》(SCIENTIA SINICA Physica, Mechanica & Astronomica, SCPMA)在线发表题为“Emerging theory and phenomena in thermal conduction: A selective review”的综述。文章从理论模型和实验技术进展角度全面介绍了近十多年热输运领域中的新兴理论和新奇现象。
  • 03 2022-10
    Applied Physics Letters刊登博士研究生任卫君关于转角二维材料中声子特性研究的综述性论文
    近日,物理科学与工程学院陈杰教授团队在美国物理联合会旗下著名期刊Applied Physics Letters(应用物理快报)上发表了题为“Phonon physics in twisted two-dimensional materials”的综述文章。文章重点回顾了转角二维堆垛材料中的声子特性的最新研究进展,同时详细介绍了层间转角对声子在不同方向的输运特性的影响。最后,分析讨论了目前在转角二维材料声子特性研究中所面临的问题与挑战,并从理论模拟和实验测量角度提出了前瞻性的解决方案。
  • 18 2022-08
    Nanomaterials刊登硕士研究生姜剑辉关于声子水动力输运对热导率收敛性的重要影响的研究论文
    8月,物理科学与工程学院声子学中心陈杰教授课题组在《Nanomaterials》在线发表了题为“How hydrodynamic phonon transport determines the convergence of thermal conductivity in two-dimensional materials”的研究论文,重点关注并解释了二维材料中声子的特殊输运以及热导率难收敛的现象。
  • 29 2022-04
    《npj Computational Materials》刊登张忠卫博士在非晶材料热输运领域的重要进展。
    4月29日,物理科学与工程学院声子学中心陈杰教授团队及其合作者在《npj Computational Materials》在线发表了题为“How coherence is governing diffuson heat transfer in amorphous solids”的研究论文,发展了描述非晶材料中热输运的重要理论。
  • 22 2022-04
    《现代物理评论》刊登同济大学团队综述文章!———纪念界面热阻发现200周年!
    北京时间2022年4月22日,《现代物理评论》(Reviews of Modern Physics)在线发表题为“Interfacial Thermal Resistance: Past, Present and Future”的长篇综述(50页)。作者分别是同济大学物理科学与工程学院/声子学与热能科学中心陈杰教授和徐象繁教授,南京师范大学量子输运和热能科学中心周俊教授,南方科技大学材料科学与工程系、物理系李保文教授。对于诸多微纳元器件,不管是电子元器件还是光电元器件,散热问题决定了该器件的工作性能和稳定性。高密度元器件在高速工作过程中产生大量热量,如果不能及时将热量疏导出去,就会导致元器件因局部温度过高(即通常所说的热点)而导致性能降低甚至被烧坏。如何将过多的热量传导出去,使得元器件在相对低温环境下运行是现代半导体工业面临的普遍问题。目前已知大部分电子器件均为半导体或金属,其热能的主要载体为声子或电子,因此研究微纳元器件中的散热问题便成为声子热传输和电子热传输等研究领域的关键物理问题。在集成电路中,热量从元器件扩散到封装外壳需要通过无数个半导体-半导体、半导体-金属界面。因此,器件散热问题涉及到物理及工程学上最基本的科学问题:热量(声子、电子)如何通过各种界面? 电子-声子耦合、声子-声子耦合如何影响界面热阻?由于界面两侧材料组分和结构的差异,热载流子在穿过界面时会受到散射使得界面两端在微纳尺度下产生温度跳变,由此可以定义界面热阻。物理学家傅里叶(J. B. J. Fourier)最早于1822年发现了界面处的温度跳变。他发现从固体表面流失到周围气体中的热量与温差有一定关系,并提出了“外导率”(External conducibility)的概念。之后物理学家泊松(Poisson)于1835年提出通过界面的总热量与两边温差成正比,并定义了界面热阻。波兰科学家斯莫鲁超夫斯基(M. Smoluchowski)和前苏联科学家卡皮查(P. L. Kapitza)分别于1898年和1941年定量测量了固体-气体和固体-液体的界面热阻。本文为《现代物理评论》上发表的第三篇关于界面热阻的长篇综述文章。前两篇分别发表于1969年和1989年。Pollack在1969年发表的文章中着重阐述了固体-液体界面特别是液氦的界面热阻,并详细讨论了声子失配模型AMM及液氦温度下界面热阻测量的实验方法;Swartz和Pohl等人于1989年发表的文章阐述了固体-固体界面和固体-液体界面,并讨论了AMM和扩散失配模型DMM在低温下的适用性。需要指出的是,前两篇文章都集中于讨论宏观材料及宏观界面的传热问题。普遍采用的界面热阻理论,如AMM和DMM,都是简单地假设声子以弹道传输或者扩散传输的形式通过界面,因此两个模型预测的结果与实验结果都有数量级的偏差。同时,由于测量手段的匮乏以及实验难度过大,前期界面热导实验研究工作也相对落后。随着纳米技术的发展以及纳米制备工艺的完善,同时得益于现代大型计算机的运用,界面热阻研究在近三十年来取得了长足的发展。鉴于此,本文从理论模型和实验技术进展角度全面介绍了近三十年来该领域的长足发展,讨论了固体-固体界面、固体-液体界面及固体-气体界面热阻的研究进展及存在问题,重点阐述了界面及温度的定义、界面热阻几何效应、界面热阻调控等问题,并讨论了AMM、DMM及两温度模型的适用性。该工作在线发表在:Reviews of Modern Physics, 94, 025002 (2022),得到了基金委重大项目/重点项目/面上项目,科技部重点专项,广东省重点领域研发计划和上海市科委的资助。RMP是物理领域最权威的综述期刊,主要邀请物理学权威学者对领域进行评述和展望。RMP创刊于1929年,至今以中国大陆科研机构为第一单位的论文不超过15篇。该论文的发表表明了同济大学团队在微纳尺度界面传热这一国际科技前沿领域的深厚积累和引领地位。参考文献:1. J. Chen, X.F. Xu, J. Zhou and B. Li, Interfacial Thermal Resistance: Past, Present and Future, Reviews of Modern Physics 94, 025002 (2022), https://doi.org/10.1103/RevModPhys.94.025002 2. G. L. Pollack, Kapitza Resistance, Reviews of Modern Physics 41, 48-81 (1969), https://doi.org/10.1103/RevModPhys.41.48 3. E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Reviews of Modern Physics 61, 605-668 (1989), https://doi.org/10.1103/RevModPhys.61.605 4. X.F. Xu, J. Chen, J. Zhou and B. Li, Thermal Conductivity of Polymers and Their Nanocomposites, Advanced Materials 30, 1705544 (2018), https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201705544 5. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Physics Reports, 860, 1-26 (2020), https://doi.org/10.1016/j.physrep.2020.03.001
  • 首页
  • 上页
  • 1
  • 2
  • 3
  • 下页
  • 尾页

Copyright © 2023年 中欧纳米声子学联合实验室


上海市杨浦区四平路1239号

物理科学与工程学院

邮编:200092